THE R&D PROCESS (AND THE CURRENT STATE OF PLAY VIS A VIS NEW VACCINES)

Forces impacting the pharmaceutical industry

- · Increased visibility of global health issues
- Pressure from pharmaceutical parents company to meet financial targets
- Emerging competitors
- Changes in regulation
- Emergence of many combination products
- Increased range of new and complex technologies
- · Bio tech "revolution"
 - -More products
 - -New technologies

Emerging competitors

Others: ?

Indonesia: Bio Farma

· Brazil: Biomanguinhos

· Cuba: CIGB, and the Finlay Institute

- Increased visibility of global health issues
 India: Serum Institute of India, Bhara Biotech
- Pressure from pharmaceutical pa financial targets
- Emerging competitors
- Changes in regulation
- Emergence of many combination products
- Increased range of new and complex technologies
- · Bio tech "revolution"
 - -More products
 - -New technologies

Regulation (safety, biological, increasingly complex science)

- · Increased visibility of global health issues
- Pressure from pharmaceutical parents company to meet financial targets
- Emerging competitors
- Changes in regulation

One manufacturer estimates that costs/sq m have risen 3 fold in the past 5 years because of increased regulatory requirements

- Emergence of many combination products
- Increased range of new and complex technologies
- · Bio tech "revolution"
 - -More products
 - -New technologies

Regulatory Issues

Regulatory requirements are increasing for all products:

One manufacturer estimates cost/sq m has risen 3 fold in past 5 years because of this

NRAs (National Regulatory Authorities) in developing countries have been weak historically:

NRAs in 32/51 producing countries are achieving required six regulatory functions

Only 73% of DTwP vaccine supply is of assured quality

Regulation requirements in industrialized countries are changing:

EU only licensing products used within EU (DTwP = DIPHTHERIA TOXOID, TETANUS TOXOID, and whole-cell PERTUSSIS VACCINE. The vaccine protects against diphtheria, tetanus, and whooping cough).

Combination products

- Increased visibility of global health issues
- Pressure from pharmaceutical parents company to meet financial targets
- Emerging competitors
- Changes in regulation
- Emergence of many combination products
- Increased range of new and complex technologies
- Bio tech "revolution"
 - -More products
 - -New technologies

DTP-Hep B
DT-IPV
DTP-IPV-Hib
DTPa-IPV
DTPwHB+Hib
DTwP-Hep B-Hib

- Clinical trials
- · Factory production costs
- Licensing fees
- Production costs
- Quality Control

- All baseline costs
- Incremental opportunity costs/risk

- Clinical trials
- · Factory production costs
- Licensing fees
- Production costs
- Quality Control

- All baseline costs
- Incremental opportunity costs/risk

- · Clinical trials
- Factory production costs
- Licensing fees
- Production costs
- · Quality Control

- All baseline costs
- Incremental opportunity costs/risk

- Clinical trials
- · Factory production costs
- Licensing fees
- Production costs
- Quality Control

- All baseline costs
- Incremental opportunity costs/risk

- Clinical trials
- · Factory production costs
- Licensing fees
- Production costs
- · Quality Control

- All baseline costs
- Incremental opportunity costs/risk

- Clinical trials
- · Factory production costs
- Licensing fees
- Production costs
- Quality Control

- All baseline costs
- Incremental opportunity costs/risk

Risk shifts from public to private sector. How are the rewards shared?

- · Clinical trials
- · Factory production costs
- Licensing fees
- Production costs
- · Quality Control

- All baseline costs
- Incremental opportunity costs/risk

Decision gates

Large scale economies (illustrative)

Marginal cost pricing for poorer markets

Average price----

	Overhead and R & D 47%	
	Utilities 7%	
Other QC 1%	Depreciation 13%	
	QC staff 10%	
	Production staff 14%	Other 12%
	Raw materials 10%	Filling 64% Bulk mat 24%
	'Full costs'	'Fully Marginal'

Clinical trials	• All baseline
• Factory	costs
production costs	• Incremental
• Licensing fees	opportunity costs/risk
Production costs	

Quality Control

- Factory production costs
- Licensing fees
- · Production costs
- Quality Control
- Site problems -mgmt time
- -delays • Promised product after
- trial over
- Parallel trials
- · Different data hurts licensing

- costs
- Incremental opportunity costs/risk

- Factory production costs
- Licensing fees
- · Production costs
- Quality Control

• Failure · Difficulty · Site problems with

• Promised

trial over

- -mgmt time – plans -delays
 - facility - equipment
- validation product after – staff
- •Degree of • Parallel trials dedication
- Different data hurts licensing •Management over-runs

- All baseline costs
- Incremental opportunity costs/risk

Typical cash-flow for a product

*NB expenditure on clinical studies, manufacturing, marketing etc continues after launch but for simplicity has been netted out.

Science v Revenue

	Barriers:	• Barriers:
	 Opportunity costs 	 Opportunity costs
High	 High demand risk/non-existent demand 	 Capacity constraints
	- Capacity	 Pricing Risk
	Yellow fever	• Pneumococcal conj
	Meningococcal A	
	Barriers:	Barriers:
	 High development risk 	 High development risk
Low	 High demand risk/non-existent 	 Capacity constraints
	demand	 High pricing risk
	• Malaria	• HIV
	Low	High

 Different vaccines face different barriers which may require different types of interventions

Revenue opportunity

INCENTIVES?

A range of 'push' and 'pull'

<u>PUSH</u>

- Direct investment in specific product trials
- Investment in trial infrastructure
- R&D tax credits
- Investment in production capacity
- Harmonize regulatory requirements

PULL

- Increasing the uptake of existing vaccines
- Strengthen/ensure delivery system
- Prizes and tournaments
- Tax credits on vaccine sales
- Tiered pricing to increase total revenues
- Transferable Patents
- Co-payments
- Market guarantees

Where to put 'push' and 'pull'?

Investments needed

- Investment to ensure a delivery system capable of reaching infants and other target groups with priority vaccines
- Investment to rapidly develop priority vaccines targeting the diseases of the developing world
- Investment in production capacity to ensure the supply of global vaccines to the developing world
- Pricing which is affordable to the developing world
- Funding to purchase vaccines as soon as they are technically available

Conundrum

	Current model	Required HIV vaccine model
Introduction:	 LDCs 10 years plus after OECD 	 At earliest scientific opportunity
Target population:	• OECD	• OECD + global
LDC-specific development spend:	• Limited/zero	 Significant spend probably necessary
LDC testing:	• Limited/late	 Significant/required early
Capacity availability:	 Limited to OECD until maturity 	• Global early
		_

Very low (marginal) prices available to LDCs only available at cost of delayed introduction

Prices or other incentives must justify full costs of accelerated LDC introduction